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1. Introduction to Modulation 

In modern communication systems, the signal generated by the information source can normally 
not be transmitted directly. In the majority of cases, an adjustment to the physical channel, i.e. a 
coax cable, a wireless channel or an optical fiber, is necessary. For the purpose of the economical 
utilization of the channel, the bundling of different signals is common. For transmission in wireless 
communication systems, the use of sinusoidal carriers is common, with the information 
influencing their amplitude, frequency, phase or combinations of these characteristics. 
The term modulation means the changing of one or more signal parameters (amplitude, 
frequency or phase) of a carrier as a function of the information. Due to this, the information is 
ñimprintedò onto the carrier signal. 

 

Modulation allows for achieving the following objectives: 

¶ Adjustment of the frequency range to the respective transmission channel with low-pass, 
band-pass or high-pass behavior (physical reasons). The modulated signal is shifted to a 
frequency range, which allows for an easy implementation of communication systems, e.g. 
emission by means of antennas, use of fiber optics, etc. 

¶ Multiplex transmission, i.e. bundling of the signals 
Combination of multiple primary signals using the appropriate modulation method to create a 
secondary signal. In this process, the same transmission channel is used several times by 
means of multiplexing in order to increase the channel capacity. 
In the case of radio broadcasting, for example, the modulation is used for the selection and 
separation of numerous communications signals, i.e. several VHF or TV stations with 
different carrier frequencies. In this process, for each of the information channels a fraction of 
the entire frequency band is made available for the entire time (frequency multiplex). 

¶ Increased interference protection: Translation of Shannonôs law in order to adjust it to a 
certain channel, e.g. by means of coded modulation methods or spread spectrum 
techniques, for example, immunity to noise and interferences can be significantly increased 
by exchanging bandwidth for signal-to-noise ratio. 
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Fig. 1-1: Reasons for modulation 
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Modulation and demodulation also serve for translating information into a signal form, which 
guarantees the transmission of the information over the largest possible distance or any given 
distance while maintaining the required signal-to-noise ratio. For this process, the basic 
conditions with regard to the channel capacity and the specific characteristics of the transmission 
channel must be taken into account (frequency-dependent attenuation and phase, time- and 
frequency-selective channels). 

Modulation transforms the information into a different form, usually in a higher frequency range 
(radio frequency, RF). In theory, any type of signal is possible for the carrier signal, even noise. 
Technically, however, only two signal types are used: 

a)  Pulse carrier (periodic pulse sequence) for low-pass or base-band transmission and 
time division multiplexing as well as 

b).  Harmonic (sinusoidal) carrier for band-pass or high-pass transmission and frequency 
division multiplexing 

 

For wireless communications technology, modulation methods with pulse carriers cannot be used 
due to their unfavorable spectral behavior. In this case, only sinusoidal carriers are used. 
 

The modulation or information signal, which is also called baseband signal (Baseband, BB), can 
be analog or digital. 
Analog signals have continuous times and values, e.g. the audio signal from a microphone. 
Digital modulation signals have discrete times and values in the form of discrete symbols, which 
can have only a finite set of values, e.g. 0,1,-1. Binary symbols which can only have two values 
(e.g. 0 and 1, or +1 and -1) are often used. Examples of digital modulation signals include serial bit 
sequences at the interface of a computer or the output signals of an A/D converter. 

Modulation types can therefore be divided into four groups: 

1. Analog modulation of a pulse carrier 

2. Digital modulation of a pulse carrier 

3. Analog modulation of a sinusoidal carrier 

4. Digital modulation of a sinusoidal carrier 

 

The difference between analog and digital modulation methods is not their constitution, but only 
the form of the modulation or information signal. The most important basic methods are illustrated 
in Fig. 1-2 and Fig. 1-3 . 

In summary, this method has three characteristics: 

1. Type of modulation carrier (harmonic carrier or pulse carrier), 

2. Type of modulation or information signal (analog or digital) 

3. Choice of the carrierôs signal parameter that is to be influenced (amplitude, frequency or 
   phase). 
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Fig. 1-2: Modulation of pulse carrier 
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Fig. 1-3: Modulation of sinusoidal carrier 

 

1.1 Access methods, bundling of signals 

The goal of modern wireless communication systems is to give a large number of users access to 
the limited frequency or time range, without interfering with each other. 

There are the following different multiplex methods: 

Frequency Division Multiple Access FDMA  

Time Division Multiple Access TDMA 

Code Division Multiple Access CDMA 

Orthogonal Frequency Division Multiplexing OFDM  

Space Division Multiple Access SDMA (Picocells) 

All of the methods listed here are commonly used today, sometimes even several of them at the 
same time. 
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FDMA Frequency Division Multiple Access: 

The available frequency range is divided into several different channels (users). The individual 
channels are made available at the same time and can be operated absolutely independent from 
one another (e.g. for broadcasting). However, it is also possible that one transmitter generates all 
of the channels and therefore makes multiple channels available (e.g. with older microwave 
systems). 

The bandwidth of the channel is subject to the used modulation method. The unused frequency 
band between channels prevents interference caused by adjacent channels. If signals in multiple 
channels are present simultaneously, nonlinearities in the system result in intermodulation 
products, and the channel allocation must be carefully planned.   
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Fig. 1-4: Frequency allocation in FDMA systems 

Typical applications: Broadcast FM, TV-Channels 

 

TDMA Time Division Multiple Access   

One channel is assigned to different users during subsequent periods of time. 

The channel is made available to each of the users during a defined time slot. 

A protection period between the individual slots is necessary in order to prevent interferences 
between adjacent slots due to differing signal propagation times. 

Since one channel is available to a user only for a fraction of the time, the data must be 
transmitted in time-compressed form. This results in high data throughput on the transmission 
channel.   

The individual time slots can be assigned different transmission directions. This allows for a 
full-duplex mode, without complex filters. 

In many cases, TDMA and FDMA are used in combination: The total available bandwidth is 
divided into individual channels (FDMA) which are then accessed using the TDMA method. 
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Fig. 1-5: Time allocation in TDMA systems 

Typical applications: GSM, Bluetooth 

 

  



 

© 2010-2018  F. Dellsperger  5 

CDMA Code Division Multiple Access 

With the CDMA method, all users are allowed the utilization of the entire available spectrum at the 
same time. 

In order to be able to distinguish the individual signals, they are assigned different codes. 

A demonstrative example for this: At a party, different languages (= codes) are being spoken at 
the same time and in the same room, but each language only once. If a participant understands a 
certain language, he can follow this particular conversation. 

Due to the coding, spreading of the individual signals occurs so that subsequently, they occupy 
several times their original bandwidth. 

Practical spreading factors: 8 ... 1024. Usually as a power of 2. 

CDMA is also referred to as spread spectrum technology. 
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Fig. 1-6: Code allocation in CDMA systems 

In mobile communications, mainly the following two methods are used: 

-  Direct Sequence (DS-) CDMA and 

-  Frequency Hopping (FH-) CDMA. 

For the DS method, spreading is done with a code, which does not depend on the data to be sent.  

The receiver operates synchronously to the code sequence of the transmitter and therefore 
reverses the spreading. Due to the despreading, discrete noise signals are spread, resulting in an 
improvement of the signal-to-noise ratio at the receiver. 

Advantages of spread spectrum method:  

- Low susceptibility to multipath propagation effects. Due to the large transmitting bandwidth,  
  only a small fraction is influenced by the frequency-selective Rayleigh fading 

  ­  only weak signal dips (fading) occur. 

- Minimal effects from interference signals. 

- Low power spectral density. 

- The spreading code also serves as encryption. The information can only be detected  
 if the code is known (matched filter). 

- The influence of spread spectrum signals to other conventional systems is a deterioration 
of the 
  signal-to-noise ratio only. The same also applies vice-versa. 

 

Typical applications: D-AMPS, W-CDMA (UMTS), Bluetooth (FH-CDMA) 

  



 

© 2010-2018  F. Dellsperger  6 

OFDM Orthogonal Frequency Division Multiplexing  

OFDM is a multi-carrier modulation technique that uses multiple carrier frequencies to transmit a 
digital signal. Each carrier is modulated using only a fraction of the information. 

As a modulation results in the generation of sidebands with zeros spaced by multiples of the data 
rate, this frequency spacing is chosen for the carrier signals. 

 

Frequency

P
o

w
e

r

Carrier 1 2 3 4 5

 

Fig. 1-7: Modulated carriers in OFDM system 

Typical applications: 
 Digital Video Broadcast DVB, Digital Audio Broadcast DAB, WLAN IEEE 802.11g, LTE 

 

1.2 Useful Signal-Theory and Mathematical Methods 

Analog and digital modulations use different forms of signals for their descriptions.  
For analog modulations, the modulation signal consists of a continuous signal and influences a 
cosine carrier in its amplitude, frequency and phase. If both signals are described in the time 
domain, the modulation can primarily be explained by means of the multiplication of cosine 
signals. 

Digital modulations use discrete (digital) modulation signals to influence one or several cosine 
carriers. For the description and analysis of these signals, further procedures and methods 
relating to signal description and signal processing are useful. These procedures and methods 
will be considered in the following to an extent required for the understanding of analog and digital 
modulation. Generally, derivations and proofs are not provided. Please refer to the 
comprehensive specialist literature [9], [10]. 

1.2.1 Classification of signals 

1.2.1.1 Deterministic signals 

Deterministic signals are signals whose functional values may be completely described with a 
mathematical term. 
Examples: Periodic signals, sine and cosine signals 

1.2.1.2 Random signals 

Random signals are arbitrary signals which may only be described with statistic methods. 
Examples: Noise, interfering signals, voice signals 
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1.2.1.3 Causal signals 

Causal signals are signals whose value is zero on the negative time scale 

()
()

cs

s t t 0
s t

0 t 0

>
=

<
  

They include the switch-on issue. 
A causal signals whose values are not zero even for t<0 are mathematically easier to process 
than causal signals. 

1.2.1.4 Energy signals 

Energy signals have a finite energy: 

()
2

E s t dt 0 E
+¤

-¤

= < <¤ñ   (1.1) 

E is the energy normalized to 1W with the unit Ws.  

Examples: Time-limited pulses such as the rectangular pulse, triangular pulse, Gaussian pulse 

1.2.1.5 Power signals  

Power signals have a finite power: 

()
T

2

T
T

1
P lim s t dt 0 P

2T

+

­¤
-

= < <¤ñ   (1.2) 

Examples: All periodic signals such as sine and cosine signals and random signals such as noise 

1.2.1.6 Analytic signal and Hilbert transformation  

The ideal Hilbert transformer has a constant amplitude response with the value 1 and a phase 

shift of o90+  for negative frequencies (f<0) and o90-  for positive frequencies (f>0).  Therefore, 

the Hilbert transformer is also referred to as o90  phase shifter.  

It may be approximated very well with a FIR filter. 

The Hilbert transformation  is defined as 

(){ } () ()

()

()

j S f : f 0

S f j sgn f S f 0 : f 0

j S f : f 0

- Ö >

=- Ö Ö = =

+ Ö <

  (1.3) 

Signum: ()

1: x 0

sgn x 0 : x 0

1: x 0

+ >

= =

- <

  

Or interpreted as a phase shifter: 

()
o

o

90 : f 0
f

90 : f 0

+ <
Dj =

- >
  (1.4) 

f
0

ÖÖÖÖ

ÖÖÖÖ

()( )S fj

o90+

o90-

 

Fig. 1-8: Phase shift of a Hilbert-Transformer 
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An analytic signal is defined as a signal whose spectrum has the value zero at negative 
frequencies and has only spectral components at positive frequencies. 

()
()S f : f 0

S f
0 : f 0

+

+

²
=

<
  (1.5) 

An analytic signal may only have complex values since real signals always have spectral 
components at negative frequencies. 

() () () () ()Ĕs t Re s t jIm s t s t js tè ø è ø= + = +ê ú ê ú   

An analytic signal may be formed by means of the Hilbert transformation from a real signal by 
taking the real signal as real part and forming the imaginary part with the Hilbert transformation. 

The real part ()s t  and the imaginary part ()Ĕs t  are linked to each other via the Hilbert 

transformation: 

() () () () (){ }

() () ()

Ĕ Ĕs t s t js t s t s t

ĔS f S f jS f

+

+

= + =

= +
 (1.6) 

() (){ }Ĕs t s t=j

() () ()Ĕs t s t js t

analytic signal

+
= +

=

()s t

 

The consideration in the frequency domain results in the following: 

With ()
()

()

j S f : f 0
ĔS f

j S f : f 0

- Ö ²
=
+ Ö <

 (1.7) 

()
() () ()

() ()

S f j j S f 2 S f f 0
S f

S f j jS f 0 f 0
+

è ø+ - Ö = Ö ²ê ú
=

è ø+ Ö = <ê ú

  = analytic signal (1.8) 

f
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a) b)
 

Fig. 1-9: a) Real signal,  b) Analytic signal 
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The following applies as well: 

() () (){ }
22

s t s t s t
+
= +  = envelope (1.9) 

()
(){ }
()

s t
t arctan

s t

å õ
j = æ ö

æ ö
ç ÷

 = instantaneous phase (1.10) 

()
()d t1

f t
2 dt

j
=
p

 = instantaneous frequency (1.11) 

1.2.1.7 Continuous signals 

A continuous signal (analog signal) has continuous amplitude and a continuous time. 

t

()s t

0  

Fig. 1-10: Continuous or analog signal 

Examples: Microphone signals, sensor signals, sine and cosine signals 

1.2.1.8 Discrete signals and sampling 

A discrete signal (digital signal) is obtained from the analog signal by means of sampling and 
quantization. The sampling and quantization order is arbitrary. The quantization is the breakdown 
of the amplitude domain in discrete values, e.g. with an n-bit analog-digital converter. In this case, 

the number of quantization steps is 
n2 . 
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Fig. 1-11: Continuous and discrete signals 
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The ideal sampler multiplies the analog signal s(t) with the sampling function ()s td . 

() () () () ( ) ( )( )s s s s s

n n

s t s t t s t t nT s nT t nT
+¤ +¤

=-¤ =-¤

= Öd = d - = d -ä ä   (1.12) 

t

()s t

t

()s td

ÖÖÖÖ ÖÖÖÖ

sT

 

Fig. 1-12: Analog signal and sampling function 

sT  is the sampling period and s sf 1/ T=  the sampling frequency or sampling rate. 

The result is a value-continuous, time-discrete signal consisting of a Dirac pulse sequence whose 

weights correspond to the sampling values ( )s ss nT . 

t

()ss t

( )s ss nT

()s t

 

Fig. 1-13: Sampled analog signal  

The spectrum of the sampled signal is obtained with the convolution as shown in chap. 1.2.4. 

()1S f  is the Fourier transform of s(t) and ()fD  is the Fourier transform of the sampling function 

()s td . 

f
0 s2fsfs2f-

sf-

ÖÖÖÖÖÖÖÖ

()fD

f
0

()1S f

1A

*
() () ()1S f S f f= *D

f
0 s2fsfs2f-

sf-

ÖÖÖÖÖÖÖÖ

()S f

B

 

Fig. 1-14: Sampled analog signal, convolution in frequency domain  

For the correct signal reconstruction, the spectrums of the sampled signal may not overlap. This 
results in the following sampling theorem: 

s maxf 2f>   (1.13) 

maxf  is the maximum frequency or bandwidth B of the analog signal. 

If this condition is not met and the spectrums overlap, this effect is called "aliasing" and the 
original analog signal may not be reconstructed correctly. Signal parts of the analog signal above 

maxf  may be suppressed with an anti-aliasing filter (low-pass filter) before sampling. 
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f
0 s2fsfs2f-

sf-

ÖÖÖÖÖÖÖÖ

()S f

AliasingAliasing

 

Fig. 1-15: Aliasing, spectrum overlapping  

For band-pass signals with a frequency range from minf  to maxf , with minf 0> , as they occur, for 

example, as intermediate frequency in a receiver, the sampling theorem may also be formulated 
differently: 

maxmin
s

2f2f
f k 0,1,2,....

k k 1
> > =

+
  (1.14) 

whereas 

min

max min

f
0 k

f f
¢ ¢

-
  (1.15) 

 
In the case of band-pass signals, it is therefore possible to manage with lower sampling 
frequencies. 

Discrete (digital) signals are represented as a sequence of time-discrete values in the form  

[] [ ] [ ] [] [ ] [ ]{ }x n ....,x 2 ,x 1 ,x 0 ,x 1 ,x 2 ,....= - - + +
  

nÍ : n is an integer in the range n-¤< <+¤.  

In the following, discrete signals and operations with discrete signals are listed as completion. 

1.2.2 Mathematical description and graphical representation of signals 

1.2.2.1 Sine/Cosine signal 

In general, a continuous cosine signal in the time domain is described by 

() ( )cs t Acos t= w +q  (1.16) 

 

c c

A Peak amplitude

Angular frequency = 2 f

= Phase

t = Time

=

w = p

q

 

With Fourier transformation, the continuous signal results in the frequency domain 

() (){ } () ( ) ( )j2 ft j j

c c

A A
S f s t s t e dt e f f e f f

2 2

¤

- p q - q

-¤

= = = d - + d +ñ   (1.17) 
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A cosine carrier influenced by the modulation signal is described by 

() ( )c c c
Ĕs t V cos t= Ö w +q

AM FM PM
c

c c

ĔV Carrier peak voltage

Carrier angular frequency = 2 f

= Carrier phase at t 0

t = Time

=

w = p

q =
 (1.18) 

 

There are three options for influencing the carrier by means of the modulation signal: 

  c c
ĔV , ,w q

 

Amplitude modulation: 

Amplitude modulation is modifying the carrier amplitude 
c
ĔV  with the modulation content.  

cw and qremain constant. qis assumed to be 0 in most cases. 

Frequency modulation: 

Frequency modulation is modifying the carrier frequency cw  with the modulation content.  

The carrier amplitude remains constant. Due to the relation () ()t t dtj = wñ , a frequency change 

also results in a phase change. 

Phase modulation: 

Phase modulation is modifying the carrier phase q with the modulation content.  

The carrier amplitude remains constant. Due to the relation ()
()d t

t
dt

j
w = , a phase change also 

results in a frequency change. 

Frequency and phase modulation are both covered by the term angle modulation. Both 
influence the argument (angle) of the cosine.  

Representation options of the sine signal 

For describing the signals, different representations may be used. The representations are 
explained with the cosine signal. 

a) Representation in the time domain 

() ( )c c c
Ĕs t V cos t= Ö w +q  (1.19) 

The instantaneous amplitude of the signal is represented as a function of time. This 
representation corresponds to the representation with an oscilloscope. Time is represented 
linearly on the horizontal axis and the amplitude generates the vertical deflection. 

t

Tc

sc(t)

c
ĔV

  
c

c

1
T

f
=  

Fig. 1-16: Cosine signal in time domain, 0q= 
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b) Representation in the frequency domain (magnitude spectrum) 

The Fourier transformation of the cosine signal results in a spectral line, at both +fc and ïfc: 

() ( ) () ( ) ( )

() ( ) ( )

j jc c
c c c c c c

c c
c c c

Ĕ ĔV VĔs t V cos 2 f t S f e f f e f f
2 2

Ĕ ĔV V
S f f f f f

2 2

q - q= Ö p +q ½ = d - + d +

= d - + d +

¶
  (1.20) 

f
fc0-fc

()cS f

c
ĔV

2

c
ĔV

2

 

Fig. 1-17: Cosine signal in frequency domain, magnitude spectrum of a cosine signal 

In most cases it is sufficient to only consider the positive frequency axis of the spectrum since 
the magnitude spectrum of a real signal is mirror-symmetrical. The signals at negative 
frequencies result from the correct mathematical description and do not include any 
additional information. 

This representation corresponds to the representation with a spectrum analyzer. The 
frequency axis is divided linearly or logarithmically. The amplitude produces the vertical 
deflection.  

c) Representation in the phase state diagram 

The complex sine signal is obtained from (1.19) according to Euler 

() ( ) ( )
()

( )
()

cj t

c c c c c c

I t Q t

Ĕ Ĕ Ĕs t V e V cos t jV sin t
w +q

= = w +q + w +q  (1.21) 

The signal is represented in the polar diagram as a phasor at a certain point in time. The 

phasor length corresponds to the amplitude c
ĔV  and the angle c tq+w to the instantaneous 

phase. q is the angle at t 0= . 

The positive I-axis (x-axis) corresponds to an angle of 0 degree.  

For the signal representation with digital modulations, the horizontal (real) axis is often called 
I-axis (in-phase component) and the vertical (imaginary) axis is called Q-axis (quadrature 
phase component). 

I

Q

I = In-Phase-Component

Q = Quadrature-Phase-Component

c tw

c tq+w

c
ĔV

 

Fig. 1-18: Complex sinusoidal signal in phase diagram, phasor of complex sinusoidal signal 
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1.2.2.2 Discrete cosine signal 

[] c

n
x n A cos T

N

å õ
= wæ ö

ç ÷  

N Number of samples in T

n=0,1,2,...,N-1

=

  (1.22) 

1.2.2.3 Rectangular Pulse 

In the digital modulation, the rectangular signal is frequently present. 

()
0

0 0

0 : t T / 2t
s t A rect

T A : t T / 2

ë >å õî
= Ö =ìæ ö

<ç ÷îí

 (1.23) 

t

()s t

0T

2
+0T

2
-

A

 

Fig. 1-19: Rectangular pulse 

1.2.2.4 Dirac Impulse (Unit Impulse) 

If, for the rectangular pulse, the width T0 and the height 1/T0 (area = 1) is chosen and T0 
approaches zero, an infinitely high and infinitely thin pulse with the area of 1 is generated. The 

pulse defined in this way ()td  is called Dirac pulse. The Dirac pulse is used to analyze the pulse 

response of a system and for sampling continuous signals. The Dirac pulse is graphically 
represented by a vertical arrow. The area 1 is specified with a number next to the arrowhead. In 
communication technology, the area indication regarding an area of 1 is mostly omitted for 
simplification purposes. 

t

()td

1

0  

Fig. 1-20: Dirac impulse 

If the signal ()s t  is multiplied with a Dirac pulse ( )0t td -  displaced by 0t  and then integrated, 

a signal value of ()0s t  is achieved at time 0t . 

() ( ) ()0 0s t t t dt s t
¤

-¤

Öd - =ñ   (1.24) 

The signal ()s t  is sampled at 0t  by the Dirac pulse ( )0t td - . 
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t

()s t

0

t

()td

0

( )0t td -

0t

t

()s t

0

()0s t

0t

 

Fig. 1-21: Sample at t0 

A series of Dirac pulses with equal distance T is the important sampling function for the 
analog-digital converter. 

() ( )A

n

t t nT n 0, 1, 2, 3,
¤

=-¤

d = d - = ° ° ° ÖÖÖä   (1.25) 

t

()td

1

0 2TT 3T 4T3T-4T- 2T- T-

ÖÖÖÖÖÖÖÖ

 

Fig. 1-22: Sampling function 

1.2.2.5 Sinc function (cardinal sine function) 

This function is frequently used in modulation and signal processing. It is used in two slightly 
different definitions. 
In mathematics as 

()
()sin x

si x
x

=   (1.26) 

In signal processing and information theory as 

()
( )sin x

sinc x
x

p
=
p

  (1.27) 

  



 

© 2010-2018  F. Dellsperger  16 

The function () ()
( )sin t

s t sinc t
t

p
= =

p
 has a maximum value of 1 and all zeros at integer  

multiples of t. 

 

 

Fig. 1-23: Sinc function 

1.2.3 Fourier Series and Fourier Transformation 

1.2.3.1 Fourier Series and Fourier Transformation of continuous signals 

While studying heat propagation, the French mathematician and physician Jean Baptiste Joseph 
Fourier discovered in 1807 that each periodic signal with the periodic time T may be represented 
as a sum of sine and cosine signals. The lowest frequency is 1/T, all other signals are integer 
multiples (harmonics) of this frequency.  

The periodic signal s(t) with the periodic time T may be represented by the Fourier series: 

() ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
n 0 n 0

n 1

0
1 0 2 0 n 0 1 0 2 0 n 0

0 0

a
s t a cos n t b sin n t

2

a
a cos t a cos 2 t ... a cos n t b sin t b sin 2 t ... b sin n t

2

2
2 f n 1,2,3,....

T

¤

=

è ø= + w + wê ú

= + w + w + + w + w + w + + w

p
w = p = =

ä

 (1.28) 

0f  is the fundamental frequency 

With the Fourier coefficients an and bn 

()
()

() ( )
()

() ( )
()

0

T

n 0

T

n 0

T

2
a s t dt

T

2
a s t cos n t dt

T

2
b s t sin n t dt

T

=

= w

= w

ñ

ñ

ñ

 (1.29) 

(T): Integration over an arbitrary periodic interval of length T 

  

7- 6- 5- 4- 3- 2- 1- 0 1 2 3 4 5 6 7
0.5-

0

0.5

1

sinc t( )

t
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By combining the sine and cosine terms of the same frequency, an amplitude phase form is 
obtained. 

( ) ( ) ( )n 0 n 0 n 0 na cos n t b sin n t A cos n tw + w = w +j  (1.30) 

() ( ) ( ) ( )

( ) ( ) ( )

0 n 0 n 0 0 n 0 n
n 1 n 1

0 1 0 1 2 0 2 n 0 n

s t A a cos n t b sin n t A A cos n t

A A cos t A cos 2 t .... A cos n t

¤ ¤

= =

è ø= + w + w = + w +jê ú

= + w +j + w +j + + w +j

ä ä
 (1.31) 

With 

0
0

2 2 th

n n n

thn
n n

n

a
A DC

2

A a b Amplitude of n  Harmonic

b
arctan Phase of n  Harmonic (+  if a 0)

a

=

= +

j = p <

 (1.32) 

For even functions () ( )s t s t= -: 

()
()

() ( )
()

0

T

n 0

T

n

2
a s t dt

T

2
a s t cos n t dt

T

b 0

=

= w

=

ñ

ñ  (1.33) 

For odd functions () ()s t s t=- : 

() ( )
()

0

n

n 0

T

a 0

a 0

2
b s t sin n t dt

T

=

=

= wñ

 (1.34) 

With the relations 

( ) ( ) ( ) ( )0 0 0 0jn t jn t jn t jn t

0 0

1 1
cos n t e e sin n t e e

2 2j

w - w w - w
w = + w = -

  

the complex Fourier series with the complex Fourier coefficients cn is obtained: 

()

()
()

0

0

jn t

n
n

jn t *

n n n

T

0 0 n n n n

s t c e

1
c s t e dt c c

T

A c A 2 c c

¤
w

=-¤

- w

-

=

= =

= = j =Ï

ä

ñ
 (1.35) 
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For converting the coefficients, the following applies: 

( )

( )

n n

0
n

n n

1
a jb : n 0

2

a
c : n 0

2

1
a jb : n 0

2
- -

ë
- >î

î
î
= =ì
î
î

+ <î
í

( )

( )

n n

n n

a 2Re c n 0

b 2Im c n 0

= ²

=- >
 (1.36) 

The periodic signal results in a line spectrum with spectral lines at 0 0 0 0f ,2f ,3f ....nf .  

The power sP  of a periodic signal normalized to a load resistance of 1 Ohm corresponds to the 

sum of the powers of the individual harmonics (theorem of Parseval): 

22 2 2
22 0n n n

s n 0 n
N 0 n 1 n 1 n

aA a b
P P A c

2 2 2

¤ ¤ ¤ ¤

= = = =-¤

+å õ
= = + = + =æ ö

ç ÷
ä ä ä ä   (1.37) 

 

A non-periodic (aperiodic) signal s(t) may be described by means of the Fourier transformation 
in the frequency domain: 

() (){ } () j2 ftS f s t s t e dt
+¤

- p

-¤

= =ñ   (1.38) 

And the inverse transformation in the time domain: 

() (){ } ()1 j2 fts t S f S f e df
+¤

- p

-¤

= =ñ  (1.39) 

()S f  and ()s t  form a transformation pair, which is expressed with a symbol 

() ()s t S f½¶
 

()S f  specifies the distribution of amplitude versus frequency. If ()s t  has the unit of a voltage, 

the Fourier transform ()S f  has the unit Vs or V/Hz and represents an amplitude density.  

An aperiodic signal has a continuous amplitude density spectrum. 

The Fourier transform ()S f  is a complex function and may be represented as a real and 

imaginary part or magnitude and phase: 

() (){ } (){ } () ()j f
S f Re S f jIm S f S f e

j
= + =

  

With 

() (){ } (){ } ()
(){ }
(){ }

2 2
Im S f

S f Re S f Im S f f arctan
Re S f

= + j =

  (1.40) 
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1.2.3.2 Discrete Fourier Transformation DFT 

The discrete Fourier transformation represents a time-discrete, periodic signal on a periodic 
frequency spectrum. At least one period with N samples must be used. 

[] [] []
nN 1 N 1j2 k
N

n 0 n 0

n n
X k x n e x n cos 2 k jsin 2 k

N N

- -- p

= =

è øå õ å õ
= = p - pæ ö æ öé ù

ç ÷ ç ÷ê ú
ä ä  (1.41) 

k 0,1,2,....,N 1= - 

Requires N
2
 multiplications + N(N-1) additions  

2Nº  MACôs (Multiply and Accumulate) 

Example: 
5

0 DC
Ĕx 1 f 1Hz x 0.5 N 2 32 n 0,1,.....,N 1= = = = = = -  

0 10 20 30

0.2

0.4

0.6

0.8

X k( )

k

N
/2

-1

N
/2

N
-1 N

Positive Frequenzen Negative Frequenzen

k

 

Fig. 1-24: Amplitude and Phase Spectrum of a discrete signal 

Or for a complex signal 

[] [] [] []j n
x n e mit n x n

j
j =Ï

 

[] []
[]

nN 1 j 2 k n
N

n 0

X k x n e

å õ- - p -jæ ö
ç ÷

=

=ä  (1.42) 

[] []( ) []( ) [] []( )
2 2

X k Re X k Im X k k arg X k= + j =  

 

Inverse Discrete Fourier Transformation IDFT 

[] [] []
nN 1 N 1j2 k
N

k 0 k 0

1 1 n n
x n X k e X k cos 2 k jsin 2 k

N N N N

- -p

= =

è øå õ å õ
= = p + pæ ö æ öé ù

ç ÷ ç ÷ê ú
ä ä  (1.43) 

n 0,1,2,....,N 1= - 

[] []( ) []( ) [] []( )
2 2

x n Re x n Im x n n arg x n= + j =  
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Fast Fourier Transformation FFT and IFFT 

FFT and IFFT are special algorithms for calculating the discrete Fourier transformation and 
requires significantly less computer resources than DFT and IDFT. 

Condition: 
qN 2 q 1,2,.....= =  

Requires  
2N

N
2
+  MACôs (Multiply and Accumulate) 

 

1.2.3.3 Examples:  

Periodic unipolar square wave 

t

()s t

sT

2
+sT

2
-

A

0T- 0T+

sT

ÖÖÖÖÖÖÖÖ ½¶

f

A

2

0

03f

0f 05f05f-

03f-

0f-

ÖÖÖÖÖÖÖÖ

()S f

1 2A

2
Ö
p

1 2A

2 3
Ö
p1 2A

2 5
Ö
p

f

A

2

0 03f0f 05f05f-
03f- 0f-

ÖÖÖÖÖÖÖÖ

()S f

1 2A

2
Ö
p

1 2A

2 3
Ö
p

1 2A

2 5
Ö
p

 

Fig. 1-25: Unipolar square wave, time domain and spectrum 

0
s 0

0

T 1
T f

2 T
= =

  

The Fourier coefficients of this signal are: 

()
( )

s

s0

T

2
s

0

T0 0 0T

2

2AT2 2
a s t dt A dt A

T T T

+

-

å õ
æ ö

= = = =æ ö
æ ö
ç ÷

ñ ñ

  

() ( )
( )

s

s0

T

2
s

n 0

T0 0 0 0T

2

n
sin

T2 2 1 2A 2
a s t cos n t dt Acos(n2 t)dt sin n A

nT T T n T

2

+

-

på õ
æ öå õ ç ÷

= w = p = p =æ ö
pp ç ÷

ñ ñ

 

nb 0=      (even function) 

Inserted in (1.31) 
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() ( ) ( ) ( )

( ) ( ) ( )

0 n 0 n n 0 0
n 1 n 1 n 1

0 0 0

n
sin

A A 2
s t A A cos n t a cos n2 f t A cos n2 f t

n2 2

2

A 2A 1 1
cos 2 f t cos 2 3f t cos 2 5f t ....

2 3 5

¤ ¤ ¤

= = =

på õ
æ ö
ç ÷

= + w +j = + p = + p
p

è ø
= + p - p + p -é ùpê ú

ä ä ä

 

The spectrum of the ideal square wave with a duty cycle of 1:1 ( s 0T T / 2= ) has only odd 

harmonics. Their amplitudes have a behavior proportional to 1/ n .  

The envelope of the amplitudes of the spectral lines follows the sinc function 

n
sin

2

n

2

på õ
æ ö
ç ÷

p
.  

The zeros are at even harmonics. 

The fundamental frequency 0f  is also called the 1st harmonic. 
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()s t
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t

s
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()s t

t

N=99

N: Number of Harmonics

 

Fig. 1-26: Approximation of square wave using Fourier series 

The overshoot of approx. 9% is independent from the number of considered harmonics and is 
called Gibbs phenomenon. 

Periodic bipolar square wave 

t

()s t

0T

2

A+

0T

ÖÖÖÖÖÖÖÖ
½¶

f
0 03f0f 05f05f-

03f- 0f-

ÖÖÖÖÖÖÖÖ

()S f1 4A

2
Ö
p
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Ö
p1 4A

2 5
Ö
p
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A-

 

Fig. 1-27: Bipolar square wave, time domain and spectrum 

() ( ) ( ) ( )0 0 0

4A 1 1
s t cos 2 f t cos 2 3f t cos 2 5f t ....

3 5

è ø
= p - p + p -é ùpê ú

 
0

0

1
f

T
=  

With the exception of the missing DC part and the double amplitude of the coefficients, the 
spectrum is identical to the spectrum of the unipolar square wave. 
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Periodic unipolar pulse train 
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Fig. 1-28: Pulse train, time domain and spectrum 
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Fig. 1-29: Pulse train, time domain and spectrum 

0

0

1
f

T
=

 

() ( )

( ) ( ) ( )

0

0
n 10 0

0

0 0 0

0 0 0 0

n
sin

T
s t A 2A cos 2 nf t

nT T

T

2 1 2 1 3
A A sin cos 2 f t sin cos 2 2f t sin cos 2 3f t ....

T T 2 T 3 T

¤

=

å õpt
æ ö

t t ç ÷
= + p

pt

è øå õ å õ å õt pt pt pt
= + p + p + p +é ùæ ö æ ö æ ö

pé ùç ÷ ç ÷ ç ÷ê ú

ä

  

 

The envelope of the amplitudes of the spectral lines follows the sinc function 
0

0

n
sin

T

n

T

å õpt
æ ö
ç ÷

pt
. 

The zeros are at 
1

n
t

. 
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Sampling function 

The spectrum of a periodic Dirac pulse is also a periodic Dirac pulse. 
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Fig. 1-30: Sampling function, time domain and spectrum 

The Fourier coefficients are 

( ) ( )

( ) ( ) ( )( )

0

n k

0 0 0

1
t nT cos 2 kf t

T

1
1 2 cos 2 f t cos 2 2f t cos 2 3f t .....

T

+¤ +¤

=-¤ =-¤

d - = p

è ø= + p + p + p +ê ú

ä ä
  (1.44) 

The Fourier transformation of the cosine terms results in the following 

() ( ) () ( )0

n k

1
t t nT f f kf

T

+¤ +¤

=-¤ =-¤

d = d - ½ D = d -¶ä ä  (1.45) 

Due to 
o

1
f

T
= , the distance of the Dirac pulses becomes larger in the frequency domain, the 

smaller the distance of the Dirac pulses is in the time domain. 

 

Sine and cosine signals 

The following applies as a general rule: 

() ( ) () ( ) ( )j j

c c c

A A
s t Acos t f e f f e f f

2 2
S q - q= w +q ½ = d - + d +¶   (1.46) 

Cosine signal ( )0q= : 

() ( ) () ( ) ( )c c c

A A
s t Acos t f f f f f

2 2
S= w ½ = d - + d +¶  (1.47) 

()s t

A

t f
0 cfcf-

()S f

A

2

A

2

½¶

 

Fig. 1-31: Cosine signal, time domain and spectrum 
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Sine signal o90
2

på õ
q=- =-æ ö
ç ÷

: 

() ( ) () ( ) ( )c c c c

A A
s t Acos t A sin t f j f f j f f

2 2 2
S

på õ
= w - = w ½ = d - - d +æ ö

ç ÷
¶  (1.48) 

()s t

A

t f
0 cf

cf-

()jS f

A

2

A

2

½¶

 

Fig. 1-32: Sine signal, time domain and spectrum 

Rectangular pulse 

The Fourier transformation of the aperiodic rectangular pulse results in a continuous spectrum 
containing frequencies up to infinity. 

0

0

1
f

T
=   

()
( )

( ) ( )

0

0 0

0

T

j fT j fT2
0j2 ft

0 0 0 0 0

T 0

2

sin fTe e
S f A e dt A AT AT si f T AT sinc f T

j2 f fT

+
p - p

- p

-

p-
= Ö = = = p =

p pñ   (1.49) 

() () ( ) ( )0 0 0 0

0

t
s t A rect f AT si f T AT sinc f T

T
S

å õ
= Ö ½ = p =æ ö

ç ÷
¶   (1.50) 
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Fig. 1-33: Rectangular pulse, time domain and spectrum 

The shorter the pulse, the larger the bandwidth of the main lobe in the spectral domain is and vice 
versa. 
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If the bandwidth gB 2f=  is defined as a frequency range between the -60dB points of the main 

lobe and the bandwidth multiplied by the time duration 0T  of the pulse, you will find: 

g g 0

0 0

2000 2000 2000
2 f 2f B T B

T T
p º ­ = º ­ Ö º

p p
  

An important finding of this is: 

B T constantÖ =   (1.51) 

Sinc pulse 

With the symmetry and similarity theorems of the Fourier transformation, the following is obtained 
for the rectangular pulse: 

() () ( )0 0

0 0

t t
s t A si A sinc f AT rect T f

T T
S

å õ å õ
= Ö p = Ö ½ =æ ö æ ö

ç ÷ ç ÷
¶   (1.52) 

5- 4- 3- 2- 1- 0 1 2 3 4 5

0

0.5

1

sinc
t

T0

å
æ
ç

õ
ö
÷

t

T0

A

f

()S f

0

1

2T
+

0

1

2T
-

0A TÖ

½¶

0

 

Fig. 1-34: sinc-pulse, time domain and spectrum 

Triangular pulse 

The Fourier transformation of the aperiodic triangular pulse results in a continuous spectrum 
containing frequencies up to infinity. 
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Fig. 1-35: Triangle pulse, time domain and spectrum 

 

1.2.4 Convolution 

1.2.4.1 Convolution of continuous signals 

For two continuous signals ()1s t  and ()2s t , the convolution is defined as 

() () ( )

() ()

1 2

`
1 2

y t s s t d

s t s t

+¤

-¤

= t -t t

*

ñ   (1.55) 

t is a formal integration variable with the dimension of time. 

For the convolution operation, the abbreviated form is used 

() () ()1 2y t s t s t= *   (1.56) 

Due to the Fourier transformation of the convolution, the following applies: 

() () ( )

() ( )

j2 ft

1 2

j2 ft

1 2

Y f s s t d e dt

s s t e dt d

+¤ +¤

- p

-¤ -¤

+¤ +¤

- p

-¤ -¤

è ø
= t -t té ù
ê ú

è ø
= t -t té ù

ê ú

ñ ñ

ñ ñ

  (1.57) 
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The term in the square brackets is the Fourier transformation of the signal ()1s t  delayed by t 

and therefore according to the time delay theorem () j2 f

2S f e- pt. 

() () ()

() ()

()

j2 f

1 2

j2 f

2 1

1

Y f s S f e d

S f s e d

S f

+¤

- pt

-¤

+¤

- pt

-¤

= t t

= t t

ñ

ñ
  (1.58) 

Thus, 

() () ()1 2Y f S f S f=
  

() () () ()1 2 1 2s t s t f fS S* ½ Ö¶   (1.59) 

and with the duality 

() () () ()1 2 1 2s t s t f fS SÖ ½ *¶  (1.60) 

The convolution theorem specifies that the normal product and the convolution product of two 
functions form a Fourier transformation pair. 

The product of two time functions results in the convolution of the two associated spectrums and 
vice versa. 

Examples: 

Convolution of an arbitrary signal ()1s t  with a Dirac pulse (in the time domain): 

 

() ( )2 2s t A t= d -t
  

() () () () ( ) ( )1 2 1 2 2 1s t s t s t s t A t A s t= * = * d -t = -t  (1.61) 

 

t
0

()1s t

t
0 t

()2s t

2A

1A

t
0 t

()2s t

1 2A A

* () () ( )1 2 2 1s t s t A s t* = -t

 

Fig. 1-36: Convolution in time domain of an arbitrary signal with a Dirac pulse 

  
















